A model for real-time failure prognosis based on hidden Markov model and belief rule base

نویسندگان

  • Zhi-Jie Zhou
  • Chang-Hua Hu
  • Dong-Ling Xu
  • Mao-Yin Chen
  • Donghua Zhou
چکیده

As one of most important aspects of condition-based maintenance (CBM), failure prognosis has attracted an increasing attention with the growing demand for higher operational efficiency and safety in industrial systems. Currently there are no effective methods which can predict a hidden failure of a system real-time when there exist influences from the changes of environmental factors and there is no such an accurate mathematical model for the system prognosis due to its intrinsic complexity and operating in potentially uncertain environment. Therefore, this paper focuses on developing a new hidden Markov model (HMM) based method which can deal with the problem. Although an accurate model between environmental factors and a failure process is difficult to obtain, some expert knowledge can be collected and represented by a belief rule base (BRB) which is an expert system in fact. As such, combining the HMMwith the BRB, a new prognosis model is proposed to predict the hidden failure real-time even when there are influences from the changes of environmental factors. In the proposed model, the HMM is used to capture the relationships between the hidden failure and monitored observations of a system. The BRB is used to model the relationships between the environmental factors and the transition probabilities among the hidden states of the system including the hidden failure, which is the main contribution of this paper. Moreover, a recursive algorithm for online updating the prognosis model is developed. An experimental case study is examined to demonstrate the implementation and potential applications of the proposed real-time failure prognosis method. 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines

Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...

متن کامل

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Abnormality Detection in a Landing Operation Using Hidden Markov Model

The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...

متن کامل

A Probabilistic Three-Phase Time Domain Electric Arc Furnace Model based on analytical method

An electric arc furnace (EAF) is known as nonlinear and time variant load that causes power quality (PQ) problems such as, current, voltage and current harmonics, voltage flicker, frequency changes in power system. One of the most important problems to study the EAF behavior is the choice of a suitable model for this load. Hence, in this paper, a probabilistic three-phase model is proposed base...

متن کامل

مدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز

Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 207  شماره 

صفحات  -

تاریخ انتشار 2010